CHANGE OF THE CONTENT OF METABOLITES OF GLYCOLYSIS AND THE CITRIC ACID CYCLE IN TISSUES OF CATS WITH PERIODONTITIS
DOI:
https://doi.org/10.35220/2078-8916-2024-53-3.2Keywords:
periodontitis, cat tissues, metabolites of glycolysis and the citric acid cycle.Abstract
Aim of the work. To determine a contents of reduced and oxidized metabolites of glycolysis and the citric acid cycle (pyruvate, lactate, isocitrate, malate, oxaloacetate, phosphoenolpyruvate and α-ketoglutarate) in tissues of cats with spontaneous periodontitis. Last years the experimental data demonstrate that different by their nature patologic processes and types of stress provoke similar types of damage in cellular system of the oxidationreduction state of body. It is known the regulation of cellular metabolism and energy-dependent processes are related to oxidation-reduction state of pyridin nucleotides. Materials and methods. Experimental animals were 22 cats (2-3 years old) with periodonitis, divided into 2 groups: with the chronic going of the disease and with the acute inflammatory process in periodontal tissues. The tissue samples of liver, alveolar process and rib were removed in short time and cryoconserved with the liquid nitrogen. After the treatment of homogenates in neutralized tissue samples with the use of enzyme methods (Bergmeyer H.Y.) amounts of pyruvate, lactate, isocitrate, malate, oxaloacetate, phosphoenolpyruvate and α-ketoglutarate were determined. The oxidation-reduction state was evaluated by the proportion of contents of oxidized and reduced metabolites. Results and discussion. The study results were processed with common statistic methods of the Exсel software. In the case of chronic periodontitis in cats there are prominent changes of the metabolites contents both in liver and bone tissues. The chronic going of the disease is characterizes with the less value of the oxidizedreduced substrates ratio in comparison to the acute going of periodontitis. The accumulation of lactate in cells related with the inflammation development in the bone tissue leads to the reduction of intracellular medium and the metabolic acidosis. It is related to the change of oxidation-reduction state of NAD-pairs in tissues. Conclusions. The lypogenesis inhibition and lypolysis activation, relativelу, in all cats tissue samples studied were related with the increase of reductive capabilities of pyridine nucleotides in the case of chronic periodonitis. The increase of their oxidative capabilities in the case of acute going of the disease promotes the activation of this process. But the lypogenesis regulation in conditions of this patologic state goes by the different way in comparison with normal tissues.
References
Anthony J. Covarrubias, Rosalba Perrone, Alessia Grozio, and Eric Verdin. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell. Biol. 2021. № 22(2). Р. 119–141. doi: 10.1038/ s41580-020-00313-x.
Williamson D.H., Bates M.W., Krebs H.A. Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J. 1968. № 108(3). Р. 353-61. doi: 10.1042/bj1080353.
Harris, Robert, A., Kobayashi, Rumi, Murakami, Taro, Shimomura, Yoshiharu. Regulation of Branched- Chain α-Keto Acid Dehydrogenase Kinase Expressionin Rat Liver The Journal of Nutrition. 2001. V. 131, Issue 3. P. 841S-845S.
Holness M.J., Sugden M.C. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem. Soc. Trans. 2003. 31, (6). P. 1143-1151.
Пахомова Є.О., Білоклицька Г.Ф., Коновалов М.Ф. та ін. Аліментарний фактор в регуляції кислотно-лужного стану і атрофія кісткової тканини. Вісник морської медицини. 2005. № 4(31). С. 30.
Мельничук Д.О., Пахомова В.О., Білоклицька Г.Ф. та ін. Принципове обґрунтування та розробка засобів і методів інтегральної профілактики та базисної терапії розповсюджених хронічних захворювань людини та тварин. Досягнення біології та медицини. 2004. № 2 (4). С. 78-84.
Великий М.М., Кучмеровська Т.М., Пархомець П.К. Окислювально-відновний стан вільних нікотинамідних коферментів і синтез фосфоенолпірувату в печінці щурів і морських свинок. Український біохімічний журнал. 1981, 68, № 1. С. 60-66.
Bergmeyer H.Y. Methods of enzymatic analysis (Methoden der enzymatischen Analyse), 3rd Edition / Editor-in-Chief Bergmeyer H.Y. – Basel, Deerfield Beach: Verlag Chemie, Weinheim. 1983, XXVI. 605 p.
Lian W.S., Wu R.W., Lin Y.H., Chen Y.S., Jahr H., Wang F.S. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel). 2024. № 13(4). Р. 470. doi: 10.3390/antiox13040470.
Wang X., An P., Gu Z., Luo Y., Luo J. Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int J Mol Sci. 2021. № 22(14) Р. 7525. doi: 10.3390/ ijms22147525.
Sun H.T., Zhang J., Hou N., Zhang X., Wang J., Bai Y. Spontaneous periodontitis is associated with metabolic syndrome in rhesus monkeys. Arch Oral Biol. 2014. № 59(4). Р. 386-92. doi: 10.1016/j.archoralbio.2014.01.004
Aizenbud I., Wilensky A., Almoznino G. Periodontal Disease and Its Association with Metabolic Syndrome-A Comprehensive Review. Int J Mol Sci. 2023. № 24(16). Р. 13011. doi: 10.3390/ijms241613011.
Balci N., Kurgan Ş., Çekici A., Çakır T., Serdar M.A. Free amino acid composition of saliva in patients with healthy periodontium and periodontitis. Clin Oral Investig. 2021. № 25(6). Р. 4175-4183. doi: 10.1007/ s00784-021-03977-7.
Berg J.M., Tymoczko J.L., Stryer L. Entryto the Citric Acid Cycle and Metabolism Through It Are Controlled. Biochemistry. 5th edition. New York: W.H. Freeman; 2002. Section 17.2, URL: https://www.ncbi.nlm. nih.gov/
Greenbaum A.L., Gumma K.A., McLean P. The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal states. Arch. Biochem and Biophes., 1971. 143 N3. Р. 617-663.
Biju Sam Kamalam, Françoise Medale, Sadasivam Kaushik, Sergio Polakof, Sandrine Skiba-Cassy, Stephane Panserat. Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. J. Exp. Biol. 2012. № 215(15). Р. 2567–2578. URL: https://doi.org/10.1242/ jeb.070581
Krebs H.A., Johnson W.A. The role of citric acid in intermediate metabolism in animal tissues. FEBS Lett. 1980. № 25. Р. 117 Suppl: K1-10. doi: 10.4159/ harvard.9780674366701.
Agnieszka Jankowska-Kulawy, Joanna Klimaszewska- Łata, Sylwia Gul-Hinc, Anna Ronowska, Andrzej Szutowicz. Metabolic and Cellular Compartments of Acetyl-CoA in the Healthy and Diseased Brain. International Journal of Molecular Sciences. 2022. № 17, Р. 10073. URL: https://doi.org/10.3390/ ijms231710073.