RESEARCH OF THE ROLE OF TGFB1, VDR, VEGF AND MMP1 GENES IN CLEFT LIP AND PALATE

Authors

  • S.V. Ivanchenko
  • T.H. Verbytska

DOI:

https://doi.org/10.35220/2078-8916-2024-51-1.18

Keywords:

cleft lip and palate, polymorphism, polymerase chain reaction, dentistry, genotyping.

Abstract

The study is devoted to the identification of gene polymorphisms that determine the tendency to form cleavage. Purpose of the study. Identification of gene polymorphisms that determine the tendency to form cleavage. As part of this study, we performed genotyping and comparison of the frequencies of genotypes and alleles of VDR C rs1544410 polymorphisms.IVS7 + 283, rs2010963 VEGF-634g>C, rs1799750 MMP1 -1607 ins G and rs1800471 TGFB1 915 G>C (Arg25Pro) in cleft patients and in the control group. Materials and methods. The study involved 20 patients aged 16-25 years. Patients were divided into 2 groups. The main group consisted of 10 patients with complete or partial, unilateral and bilateral cleft upper lip and upper jaw defect; the control group included 10 healthy people. Dental examination was performed in a dental office in the Department of surgical rehabilitation of patients with diseases of the maxillofacial region and reconstructive dentistry. DNA isolation from buccal epithelial cells was performed using a modified method using Chelex. Results and discussion. A group of patients with cleft (n=10) and a control group (n=10) were genotyped using the following polymorphisms: rs1544410 VDR C.IVS7 + 283, rs2010963 VEGF-634G>C, rs1799750 MMP1 -1607 ins G and rs1800471 TGFB1 915 G>C (Arg25Pro). In the study groups, the distribution of genotype frequencies, the correspondence of their distribution to The Hardy-Weinberg equilibrium (RCV), as well as differences between groups in the distribution of genotype and allele frequencies were analyzed. It is obvious that to improve the efficiency of work between groups by using a single-nucleotide polymorphism of the TGF B1 rs1800471 915 G>C gene chip (Arg25Pro). Conclusions. The rs1800471 915 G>C (Arg25Pro) polymorphism of the TGFB1 gene encoding the Transforming Growth Factor β1, which is involved in maxillofacial differentiation, may be associated with the risk of cleft formation in the Ukrainian population. No association of RG/P with VDR, VEGF, and MP1 gene polymorphisms was found.

References

Auttara-Atthakorn, A., Sungmala, J., Anothaisintawee, T., Reutrakul, S., & Sriphrapradang, C. (2022). Prevention of salivary gland dysfunction in patients treated with radioiodine for differentiated thyroid cancer: A systematic review of randomized controlled trials. Frontiers in endocrinology, 13, 960265. https://doi.org/10.3389/ fendo.2022.960265

Clement S.C., Peeters R.P., Ronckers C.M., Links T.P., van den Heuvel-Eibrink M.M., Nieveen van Dijkum E.J.M., & et al. (2015). Intermediate and longterm adverse effects of radioiodine therapy for differentiated thyroid carcinoma--a systematic review. Cancer Treat Rev. 41(10), 925-34. doi: 10.1016/j.ctrv.2015.09.001.

Caglar M., Tuncel M., & Alpar R. (2002). Scintigraphic evaluation of salivary gland dysfunction in patients with thyroid cancer after radioiodine treatment. Clin Nucl Med. 27(11), 767-71. doi: 10.1097/00003072-200211000- 00003.

Grewal, R. K., Larson, S. M., Pentlow, C. E., Pentlow, K. S., Gonen, M., Qualey, R., & Tuttle, R. M. (2009). Salivary Gland Side Effects Commonly Develop Several Weeks After Initial Radioactive Iodine Ablation. Journal of Nuclear Medicine, 50(10), 1605–1610 doi:10.2967/jnumed.108.061382

Upadhyaya, A., Meng, Z., Wang, P., Zhang, G., Jia, Q., Tan, J., Li, X., Hu, T., Liu, N., Zhou, P., Wang, S., Liu, X., Wang, H., Zhang, C., Zhao, F., & Yan, Z. (2017). Effects of first radioiodine ablation on functions of salivary glands in patients with differentiated thyroid cancer. Medicine, 96(25), e7164. https://doi.org/10.1097/ MD.0000000000007164

La Perle, K.M., Kim, D.C., Hall, N.C., Bobbey, A., Shen, D.H., Nagy, R.S., & Jhiang, S.M. (2013). Modulation of sodium/iodide symporter expression in the salivary gland. Thyroid. 23, 1029–1036. doi: 10.1089/ thy.2012.0571

Walter, M.A., Turtschi, C.P., Schindler, C. & et al. (2007). The dental safety profile of high-dose radioiodine ther- apy for thyroid cancer: Long-term results of a longitudinal cohort study. J Nucl Med., 48, 1620–1625.

Koca, G., Gültekin, S.S., Han, U., Kuru, S., Demirel, K., & Korkmaz, M. (2013) The efficacy of montelukast as a protective agent against 131I-induced salivary gland damage in rats: scintigraphic and histopathological findings. Nucl Med Commun, 34, 507–517. https://doi. org/10.1097/MNM.0b013e32835ffecd

Kim, J.W., Kim, J.M., Choi, M.E., Kim, S.K., Kim, Y.M. & Choi, J.S. (2020) Does salivary function decrease in proportion to radioiodine dose? Laryngoscope, 130(9), 2173–2178 https://doi.org/10. 1002/lary.28342

Tateishi, Y., Sasabe, E., Ueta, E., & Yamamoto, T. (2008) Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation. Biochem Biophys Res Commun, 366, 301–307. https://doi.org/ 10.1016/j. bbrc.2007.11.039

Avila, J.L., Grundmann, O., Burd, R., & Limesand, K.H. (2009) Radiation-induced salivary gland dysfunction results from p53-dependent apoptosis. Int J Radiat Oncol Biol Phys, 73, 523– 529. https://doi.org/10.1016/j. ijrobp.2008.09.036

Sadiç, M., Korkmaz, M., Gültekin, S.S., & Demircan, K. (2016) Altera- tions in ADAMTS12 gene expression in salivary glands of radi- oiodine-131-administeredrats. Nucl Med Commun, 37, 1010– 1015. https://doi. org/10.1097/MNM.0000000000000556

Klein Hesselink, E. N., Brouwers, A. H., de Jong, J. R., van der Horst-Schrivers, A. N., Coppes, R.P., Lefrandt, J.D., Jager, P.L., Vissink, A., & Links, T. P. (2016). Effects of Radioiodine Treatment on Salivary Gland Function in Patients with Differentiated Thyroid Carcinoma: A Prospective Study. J Nucl Med, 57(11), 1685-91 http://dx. doi.org/10.2967/jnumed.115.169888

Walter, M.A., Turtschi, C.P., Schindler, C., Minnig, P., Müller-Brand, J., & Müller, B. (2007). The dental safety profile of high-dose radioiodine therapy for thyroid cancer: long-term results of a longitudinal cohort study. J Nucl Med., 48, 1620–1625 doi: 10.2967/ jnumed.107.042192.

Kielbassa, A.M., Hinkelbein, W., Hellwig, E., & Meyer-Luckel, H. (2006). Radiation-related damage to dentition. Lancet Oncol., 7, 326–335.

Stone, H.B., Coleman, C.N., Anscher, M.S., & McBride, W.H. (2003). Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol., 4, 529–536.

Mester, A., Piciu, A., Lucaciu, O., Apostu, D., Piciu, D., & Voina-Tonea, A. (2021). Assessment and Care of Oral Lesions for Patients Who Undergo Radioiodine Treatment for Thyroid Cancer. The American journal of the medical sciences, 361(1), 8–13. https://doi.org/10.1016/j. amjms.2020.07.035

Adramerinas, M., Andreadis, D., Vahtsevanos, K., Poulopoulos, A., & Pazaitou-Panayiotou, K. (2021). Sialadenitis as a complication of radioiodine therapy in patients with thyroid cancer: where do we stand? Hormones (Athens), 20(4), 669-678. doi: 10.1007/s42000-021-00304-3

Zeng, Q., & Mandel, L. (2019). Radioactive Iodine-Induced Hyposalivation: Case Report. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 77(9), 1837–1840 https://doi.org/10.1016/j.joms.2019.03.032

Li, X., Su, J. Z., Zhang, Y. Y., Zhang, L. Q., Zhang, Y. Q., Liu, D. G., & Yu, G. Y. (2020). Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences, 52(3), 586–590 https://doi.org/10.19723/j. issn.1671-167X.2020.03.029

Gilat, H., Vainer, I., Avishai, G., Maymon, S. L., Alkan, U., Hod, R., Robenshtock, E., Friedman, S., & Shpitzer, T. (2021). Radioiodine therapy induced sialadenitis versus chronic idiopathic sialadenitis-Presentation and outcomes. Head & neck, 43(9), 2724–2730. https:// doi.org/10.1002/hed.26741

Sunavala-Dossabhoy, G. (2018). Radioactive iodine: An unappreciated threat to salivary gland function. Oral diseases, 24(1-2), 198–201. https://doi.org/10.1111/ odi.12774

Ciarallo, A., & Rivera, J. (2020). Radioactive Iodine Therapy in Differentiated Thyroid Cancer: 2020 Update. AJR Am J Roentgenol, 215(2), 285-291 doi: 10.2214/ AJR.19.22626. Epub 2020 Jun 17. PMID: 32551904.

Dreyer, N.S., Lynggaard, C.D., Jakobsen, K.K., Pedersen, A.M.L., von Buchwald, C., & Grønhøj, C. (2021). [Xerostomia]. Ugeskr Laeger. Jul 5, 183(27):V11200814. [in Danish].

Łysik, D., Niemirowicz-Laskowska, K., Bucki, R., Tokajuk, G., & Mystkowska, J. (2019). Artificial Saliva: Challenges and Future Perspectives for the Treatment of Xerostomia. Int J Mol Sci., 29, 20(13), 3199. doi: 10.3390/ ijms20133199

Kopchak, A. V., & Makarenko, V. А. (2023). A differentiated approach to complex treatment of radioiodine- induced salivary gland lesions. Modern Medical Technology, 4, 12-20.

Published

2024-05-07

How to Cite

Іванченко, С., & Вербицька, Т. (2024). RESEARCH OF THE ROLE OF TGFB1, VDR, VEGF AND MMP1 GENES IN CLEFT LIP AND PALATE. Stomatological Bulletin, 126(1), 96–101. https://doi.org/10.35220/2078-8916-2024-51-1.18

Issue

Section

ХІРУРГІЧНА СТОМАТОЛОГІЯ