COMT (VAL158MET), DRD2 (C32806T) GENE POLYMORPHISM, OPRM1 (A118G), NR3C1 (646C> G) IN MYOFASCIAL FACIAL PAIN SYNDROME
DOI:
https://doi.org/10.35220/2078-8916-2021-41-3.2Keywords:
myofascial pain syndrome, genetic polymorphism, dopamine, opioids, glucocorticoid receptorsAbstract
Relevance. Pain in the face area is one of the most difficult problems in modern medicine due primarily to the complexity of the structural and functional organization of the face area, the peculiarities of its innervation. Genetic factors play an important role in the intensity of pain perception. Mutations and Single-Nucleotide Polymorphism (SNP) in deoxyribonucleic acid (DNA) may partially explain many differences in pain sensitivity. The link between pain and polymorphism of genes responsible for the synthesis of neurotransmitters, their transporters and receptors (noradrenergic, serotonin, dopamine, opioid), enzymes that metabolize neurotransmitters has been proven. The study of pathogenetic mechanisms of the development of facial pain syndrome and the improvement of methods of their pathogenetic therapy is currently one of the cardinal directions in neurostomatology. Purpose of the study: study of polymorphism of COMT (Val158Met), DRD2 (C32806T), NR3C1 (646c> G), OPRM1 (a118g) genes in myofascial facial pain syndrome. Materials and methods. DNA samples from the genome of 10 patients diagnosed with myofascial facial pain syndrome were used for molecular genetic analysis. DNA isolation from buccal epithelial cells was performed using a modified method using Chelex. To detect single-nucleotide substitutions of the oprm1, DRD2, and NR3C1 gene loci, the PCR-PDRF analysis method was used using the corresponding restriction endonucleases. Allelic variants of the COMT gene (Val158Met) were evaluated by allele-specific polymerase chain reaction (PCR). Amplification was performed on a thermal cell "Labcycler" (SensQuest, Germany). Amplification results were evaluated by horizontal electrophoresis in 2 % agarose gel. Conclusions. The results of genotyping of patients with myofascial Facial Pain Syndrome showed that 60% of patients in the study group who have the A allele in the homo - or heterozygous form of the Val158Met polymorphism, G472A of the COMT gene, are prone to increased pain sensitivity and a stronger inflammatory response. Patients who have a reduced density of dopamine D2 receptors (the presence of the A1 allele) need drugs that increase dopamine levels to reduce chronic pain and increase the pain threshold. The presence of a minor G-allele in 15% of patients has reduced the effectiveness of narcotic analgesics in the treatment of pain syndrome. 25 % of patients, it is not the essence of the minor G allele of the glucocorticoid receptor gene (NR3C1), it is potentially possible to have a low level of cortisol, but it is necessary to be treated with a fall. Thus, the study of the genetic polymorphism of the patient with myofascial pain syndrome revealed that it was possible to get a genotype for a lower factor in the risic of the formation of chronic myofascial pain and its own corectal therapy.
References
Орлова О.Р., Мингазова Л.Р., Вейн А.М. Миофасциальный болевой синдром лица: клиника, диагностика и лечение с применением ботулинического токсина типа А (Лантокс®). Эффективная фармакотерапия. Неврология и психиатрия. 2010. № 1. С. 36–40.
Широков В.А. Миофасциальный болевой синдром: проблемы диагностики и лечения. Эффективная фармакотерапия. 2017. № 21. С. 22−29.
Diatchenko L., Slade G. D., Nackley A.G., Bhalang K., Sigurdsson A., Belfer I., Goldman D., Xu K., Shabalina S. A., Shagin D., Max M. B., Makarov S.S. Mainer Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Human Molecular Genetics, 2005. №14 (1). P. 135–143.
Гандылян К.С., Карпов С.М., Пузин М.Н. Патогенетические механизмы формирования хронических непароксизмальных прозопалгий на примере височно-нижнечелюстного сустава. Междунар. журнал экспериментального образования. 2014. № 3. С. 39–45.
P. Sean Walsh, David A. Metzger, Russell Higuchi. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. BioTechniques. 2013.Vol. 54, №. 3. Р. 134–139.
Senagore A. J., Champagne B. J., Dosokey E., Brady J., Steele S. R., Reynolds H. L., et al. Pharmacogeneticsguided analgesics in major abdominal surgery: further benefits within an enhanced recovery protocol. Am. J. Surg. 2017. Vol. 213. № 3. Р. 467–472. 10.1016/j.amjsurg.2016.11.008
Tammimaki A., Mannisto P.T. Catechol-Omethyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics. 2012. № 22. Р. 673–91. doi: 10.1097/FPC.0b013e3283560c46
Спасова А.П., Барышева О.Ю., Тихова Г.П. Полиморфизм гена катехол-о-метил трансферазы и боль. Регионарная анестезия и лечение острой боли. 2017. Т. 11, №. 1. С. 6–12.
Scott D., Stohler C., Egnatuk C.et al. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry. 2008. V. 65, № 2. Р. 220–231.
Klaus K., Butler K., Curtis F., et al. The effect of ANKK1 Taq1A and DRD2 C957T polymorphisms on executive function: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2019. № 100. Р. 224–236.
Thompson J., Thomas N., Singleton A. et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997. Vol. 7, № 6. P. 479–484.
Богданова И.В. Роль дофамина в механизмах формирования некоторых расстройств ЦНС и состояний зависимости (обзор литературы). Український вісник психоневрології. 2011. Т. 19, № 2 (67). С. 5–8.
Циркин, В.И. Багаев, Б.Н. Бейн Роль дофамина в деятельности мозга (обзор литературы). Вятский мед. вестник. 2010. № 1. С. 7–18.
Crist R.C., Berrettini W.H. Pharmacogenetics of OPRM1. Pharmacol. Biochem. Behav. 2014. Vol. 123. P. 25–33. 10.1016/j.pbb.2013.10.018. 15. Huang P., Chen C., Mague S.D., Blendy J.A., LiuChen L.Y. A common single nucleotide polymorphism A118G of the μ-opiod receptor alters its N-glycosylation and protein stability. Biochem. J. 2012. № 441(1). Р. 379–386.
Oertel B.G., Doehring A., Roskam B., Kettner M., Hackmann N., Ferreiros N. et al. Genetic-epigenetic interaction modulates m-opioid receptor regulation. Hum. Mol. Genet. 2012. № 21(21). Р. 4751–60.
Орловский М.А. Аллельный полиморфизм глюкокортикоидного рецептора NR3C1 (GR):от молекулярной биологии до клинического применения. Biopolymers and Cell. 2012. Vol. 28. № 5. P. 338–351.
Левада О.А. Нейропсихологія болю. Нейроnews. 2011. № 3. С. 22–24.
Charmandari, E., Tsigos, C., Chrousos, G. Endocrinology of the stress response, Annu. Rev. Physiol., 2005. № 67. Р. 259–284.
Niddam, D.M., Chan, R.C., Lee, S.H., Yeh, T.C., Hsieh, J.C. Central representation of hyperalgesia from myofascial trigger point. NeuroImage. 2008 № 39. Р. 1299–1306.
McEwen, B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007. № 87. Р. 873–904.
Rossum E.F., Akker E.L. Glucocorticoid resistance. Endocr. Dev.–2011. №20. P. 127–136.
Bachmann A.W., Sedgley T.L., Jackson R.V., Gibson J.N., Young R.M., Torpy D.J. Glucocorticoid receptor polymorphisms and post-traumatic stress disorder. Psychoneuroendocrinology. 2005. Vol. 30. № 3. Р. 297–306. doi: 10.1016/j.psyneuen.2004.08.006.
Anderson P. Intractable pain linked to low Cortisol. Medscape, 2016. № 03 (http://www.medscape.com/viewarticle/869649).