CHOICE OF TREATMENT TACTICS FOR OPEN FRACTURE OF THE ANGLE OF THE LOWER JAW WITH THE PRESENCE OF A TOOTH IN THE FRACTURE CLEFT
DOI:
https://doi.org/10.35220/2078-8916-2022-46-4.9Keywords:
determination of mechanical parameters of the bone, fractures of the lower jaw, tooth in the fracture gap, diastasis of the bone wound, repositioning, immobilization of fragments of the lower jawAbstract
The aim – determine the hardness and elasticity of bone tissue and improve the effectiveness of treatment of patients with open fractures of the lower jaw with the presence of a tooth in the fracture gap. Materials and methods. Clinical examination methods (objective examination), X-ray examination methods (computed tomography). 60 patients were examined and treated. In the treatment, a device for determining the mechanical parameters of the bone #150086 dated 12/30/2021 was used. Surgical treatment took place for 6 months on the basis of KMKL No. 12, ShCLV No. 2 in Kyiv from 02.01.2022 to 08.01.2022. There were 40 men and 20 women among the patients of all groups. The age of the patients ranged from 18 to 60, group I. In 40 patients with a diagnosis: In 10 patients, a unilateral fracture of the angle of the lower jaw was detected (group I). 20 patients had a bilateral fracture of the angle of the lower jaw (group II). 10 patients had a double fracture of the lower jaw (group III). A positive symptom of direct and indirect stress in the fracture areas was noted in all 60 patients. Scientific novelty. Determination of the optimal area of the bone, for applying bone fixators using a device for determining the mechanical parameters of the bone No. 150086 dated 12.30.2021. Improving the efficiency of tooth fixation in the fracture gap. Conclusions. The basis of success is the achievement of maximum diastasis of the bone wound and alignment of fragments, which allows to make the bite as natural as possible in the future and to restore it. The strength of bone tissue remains highly variable, so if the tooth remains in the area of the mandibular fracture, it is used as a support and improves the fixation of the fragments, which in turn reduces the risk of oral fluid entering the wound and at the same time better consolidation of the fragments. Normally, the strength limit of the cortical layer of the lower jaw in compression is 120–200 MPa, and in tension it is somewhat lower. The torsional strength of cortical bone is even lower, it is determined at the level of 90–100 MPa. Complications occurred in 4 patients with preserved teeth in the fracture line. Namely, 2 teeth (37,48), where the course of the fracture line passes through the hole of the tooth and 2 teeth (36,47), the fracture line passes obliquely through the hole of the tooth. The teeth were treated endodontically after trauma without rupture of the neurovascular bundle. One of the important factors remains the peculiarities of the biomechanical behavior of the fixator-bone system in this case determined by the presence of a contact zone of bone fragments, which makes it possible to directly perceive part of the load and, due to this, to unload the plate in the fracture area. After repositioning and immobilization of fragments of the lower jaw, it is necessary to create conditions for the processes of reparative osteogenesis.
References
Маланчук В.О., Логвиненко І.П., Маланчук Т.О. та ін. Хірургічна стоматологія та щелепно-лицева хірургія: підручник (у 2 томах). ЛОГОС, Київ, 2011. 606 с.
Алавердов В.П. Применение конструкций из биорезорбируемых материалов для фиксации костных фрагментов в челюстно-лицевой хирургии (клинико-экспериментальное исследование). дис. канд. мед. наук. Москва, 2005. 103 c.
Hallab N., Merritt K., Jacobs J.J. Metal sensitivity in patients with orthopaedic implants. J. Bone Joint Surg. Am. 2001. № 83-A(3). Р. 428–436.
Patterson S.P., Daffner R.H., Gallo R.A. Electrochemical corrosion of metal implants. Am. J. Roentgenol., 2005. № 184(4). Р. 1219–1222.
Музиченко П.Ф. Проблеми біоматеріаловедення в травматології та ортопедії. Травма. 2012. № 1. С. 94–98.
Руководство по внутреннему остеосинтезу / М.Е. Мюллер, М.Е. Алльговер, Р. Шнейдер и др. М.: Ad Margimen, 1996. 144 с. 41
Geeta Singh, Shadab Mohammad, Chak R. K., Norden Lepcha, Nimisha Singh, Laxman R. Malkunje Bio-Resorbable Plates as Effective Implant in Paediatric Mandibular Fracture J. Maxillofac. Oral Surg. 2012. № 11(4). Р. 400–406.
Senel F.C., Tekin U.S., Imamoglu M. Treatment of mandibular fracture with biodegradable plate in an infant: report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006. № 101(4). Р. 448–450
Saikrishna D., Nimish Gupta. Comparison of circummandibular wiring with resorbable bone plates in pediatric mandibular fractures J. Maxillofac. Oral Surg. 2010. № 9(2). Р. 116–118
El-Saadany W.H., Sadakah A.A., Hussein M.M., Saad K.A. Evaluation of using ultrasound welding process of biodegradable plates for fixation of pediatric mandibular fractures. Tanta Dental Journal. 2015. № 12. Р.22eS29.
Дудко О.Г. Остеосинтез переломів кісток полімерними конструкціями, що розсмоктуються (огляд літератури). Вісник ортопедії,травматології та протезування. 2011. № 1. С. 80–85.
Грицанов А.И., Станчиц Ю.Ф. О коррозии металлических конструкций и металлозов тканей при лечении переломов костей. Вестник хирургии. 1977. № 2. С. 105–109.
Ikarashi Y., Momma J., Tsuchiya T., Nakamura A. Evaluation of skin sensitization potential of nickel, chromium, titanium and zirconium salts using guinea pigs and mice. Biomaterials. 1996. Vol. 17. Р. 2103–2108.
Lee H.B., Oh J.S., Kim S.G., Kim H.K., Moon S.Y., Kim Y.K., et al. Comparisonof Titanium and Biodegradable Miniplates for Fixation of Mandibular Fractures. J Oral Maxillofac Surg. 2010. № 68. Р. 2065-9.
Алавердов В.П. Применение конструкций из биорезорбируемых материалов для фиксации костных фрагментов в челюстно-лицевой хирургии (клиникоэкспериментальное исследование). автореферат дис. на соискание ученой степени к. мед. н. спец. 14.00.21 Москва, 2005. 25 с.
Yu J.C., Bartlett S.P., Goldberg D.S., Gannon F., Hunter J., Habecker P., Whitaker L.A. An experimental study of the effects of craniofacial growth on the longterm positional stability of microfixation. The Journal of craniofacial surgery. 1996. № 7(1). Р. 64-68.
Wood G.D. Inion biodegradable plates: Th e fi rst century. Br J Oral Maxillofac Surg. 2006. № 44. Р. 38-41.
Маланчук В.О., Астапенко О.О., Копчак А.В. Особливості застосування біорезорбтивних фіксаторів при переломах лицевого черепу в різних анатомофункціональних зонах. наукові дискусії. Український медичний часопис. 2013. 5(97) – ІХ/Х. С. 156-159.
Bell B.R., Kindsfater C.S. Th e use of biodegradable plates and screws to stabilize facial fractures. J Oral Maxillofac Surg. 2006. № 64. Р. 31-9.
Buijs G.J., van der Houwen E.B., Stegenga B., Bos R.R., Verkerke G.J. Mechanical strength and stiffness of biodegradable and titanium osteofixation systems. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 2007. № 65(11). Р. 2148-2158.
Bostman O.M., Pihlajamaki H.K. Adverse tissue reactions to bioabsorbable fixation devices. Clinicalorthopaedics and related research. 2000. №(371). Р. 216-227.
Sedhain B.P., Jia Y.L., Yang P., Han C.H. Comparison of Biodegradable And Titanium ScrewPlates In Mandible Fracture.Journal of Nepal Dental Association. 2013. Vol. 13. № 2. Р. 54-61.
Bell B.R., Kindsfater C.S. Th e use of biodegradable plates and screws to stabilize facial fractures. J Oral Maxillofac Surg. 2006. № 64. Р. 31-9.
Ferretti C., Reyneke J.P. Mandibular, sagittal split osteotomies fixed with biodegradable or titanium screws: A prospective, comparative study of postoperative stability. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2002. № 93(5). Р. 534-537.
Wittwer G., Adeyemo W.L., Yerit K., Voracek M., Turhani D., Watzinger F., Enislidis G. Complications after zygoma fracture fixation: is there a difference between biodegradable materials and how do they compare with titanium osteosynthesis? Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2006. № 101(4). Р. 419-425.