STUDY OF BIOMECHANICAL PROPERTIES OF ENDOPROSTHESES AND PATIENT-SPECIFIC IMPLANTS FOR REPLACEMENT OF SUBTOTAL DEFECTS OF THE LOWER JAW BY THE FINITE ELEMENT METHOD

Authors

  • D.M. Chernogors'kyj Bogomolets National Medical University
  • Ju.V. Chepurnyj Bogomolets National Medical University
  • A.V. Kopchak Bogomolets National Medical University

DOI:

https://doi.org/10.35220/2078-8916-2020-37-3-50-59

Keywords:

endoprostheses, patient-specific implants, lower jaw defects

Abstract

Introduction. Replacement of large defects of the lower jaw remains an urgent problem of maxillofacial surgery, which is of great medical,social and economic im-portance.
Purpose of research. To study the stress-strain state of various types of patient-specific titanium implants when replacing Subtotal defects of the lower jaw using the finite element method, to assess their rigidity and strength un-der chewing load.
Materials and methods. The study included the creation and calculation of 3 simulation computer models of the lower jaw with a reproduced Subtotal defect, which was replaced with patient-specific implants / endoprostheses of three different types, which were modeled in accord-ance with the protocols and recommendations.
Conclusions. Thus, all the studied designs of patient-specific implants provide the necessary rigidity and strength in the conditions of chewing soft food.
At the same time, further comparative mechanical and clinical studies are needed to confirm the data obtained.

References

Kim JW, Kim DY, Ahn KM, Lee JH. Surgical impli-cations of anatomical variation in anterolateral thigh flaps for the reconstruction of oral and maxillofacial soft tissue defects: focus on perforators and pedicles. J Korean Assoc Oral Maxillofac Surg. 2016 Oct;42(5):265-270. doi: 10.5125/jkaoms.2016.42.5.265. Epub 2016 Oct 25. PMID: 27847734; PMCID: PMC5104868. 2. Hallermann W, Olsen S, Bardyn T, Taghizadeh F, Banic A, Iizuka T. A new method for computer-aided operation planning for extensive mandibular reconstruction. Plast Reconstr Surg. 2006 Jun;117(7):2431-7. doi: 10.1097/01.prs.0000219076. 83890.e8. PMID: 16772952. 3. Lee JT, Hsu H, Wang CH, Cheng LF, Sun TB, Huang CC, Chien SH. Reconstruction of extensive composite oromandibular defects with simultaneous free anterolateral thigh fasciocutaneous and fibular osteocutaneous flaps. J Reconstr Microsurg. 2010 Apr;26(3):145-51. doi: 10.1055/s-0029-1242134. Epub 2009 Nov 9. PMID: 19902408. 4. Hidalgo DA. Titanium miniplate fixation in free flap mandible reconstruction. Ann Plast Surg. 1989 Dec;23(6):498-507. doi: 10.1097/00000637-198912000-00005. PMID: 2624393. 5. Cordeiro PG, Disa JJ, Hidalgo DA, Hu QY. Recon-struction of the mandible with osseous free flaps: a 10-year ex-perience with 150 consecutive patients. Plast Reconstr Surg. 1999 Oct;104(5):1314-20. doi: 10.1097/00006534-199910000-00011. PMID: 10513911. 6. Schlieve T, Hull W, Miloro M, Kolokythas A. Is im-mediate reconstruction of the mandible with nonvascularized bone graft following resection of benign pathology a viable treatment option? J Oral Maxillofac Surg. 2015 Mar;73(3):541-9. doi: 10.1016/j.joms.2014.10.019. Epub 2014 Oct 31. PMID: 25683044.

Ciocca L, Mazzoni S, Fantini M, Persiani F, Marchetti C, Scotti R. CAD/CAM guided secondary mandibu-lar reconstruction of a discontinuity defect after ablative cancer surgery. J Craniomaxillofac Surg 2012;40(8): e511–5. 8. Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM: selec-tive laser melting technology. Int J Oral Maxillofac Surg. 2012 Jul;41(7):858-62. doi: 10.1016/j.ijom.2012.01.014. Epub 2012 Feb 28. PMID: 22377004. 9. Williams JV, Revington PJ. Novel use of an aerospace selective laser sintering machine for rapid prototyping of an or-bital blowout fracture. Int J Oral Maxillofac Surg. 2010 Feb;39(2):182-4. doi: 10.1016/j.ijom.2009.12.002. Epub 2010 Jan 12. PMID: 20064702. 10. Samman N, Luk WK, Chow TW, Cheung LK, Tideman H, Clark RK. Custom-made titanium mandibular re-construction tray. Aust Dent J. 1999 Sep;44(3):195-9. doi: 10.1111/j.1834-7819. 1999.tb00221.x. PMID: 10592564. 11. Singare S, Dichen L, Bingheng L, Yanpu L, Zhenyu G, Yaxiong L. Design and fabrication of custom mandible tita-nium tray based on rapid prototyping. Med Eng Phys. 2004 Oct;26(8):671-6. doi: 10.1016/j.medengphy.2004.06.001. PMID: 15471695. 12. Peckitt NS. Stereoscopic lithography: customized tita-nium implants in orofacial reconstruction. A new surgical tech-nique without flap cover. Br J Oral Maxillofac Surg. 1999 Oct;37(5):353-69. doi: 10.1054/bjom.1999.0070. PMID: 10577749. 13. Goto M, Katsuki T, Noguchi N, Hino N. Surgical simulation for reconstruction of mandibular bone defects using photocurable plastic skull models: report of three cases. J Oral Maxillofac Surg. 1997 Jul;55(7):772-80. doi: 10.1016/s0278-2391(97)90597-8. PMID: 9216515. 14. Hirsch DL, Howell KL, Levine JP. A novel approach to palatomaxillary reconstruction: uses of radial forearm free tis-sue transfer combined with zygomaticus implants. J Oral Maxillofac Surg. 2009 Nov;67(11):2466-72. doi: 10.1016/j.joms.2009.04.062. PMID: 19837319. 15. Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular recon-struction with free fibula osseous flaps. Int J Oral Maxillofac Surg. 2009 Feb;38(2):187-92. doi: 10.1016/j.ijom.2008.11.026. PMID: 19179046. 16. Sharaf B, Levine JP, Hirsch DL, Bastidas JA, Schiff BA, Garfein ES. Importance of computer-aided design and manufacturing technology in the multidisciplinary approach to head and neck reconstruction. J Craniofac Surg. 2010 Jul;21(4):1277-80. doi: 10.1097/SCS.0b013e3181e1b5d8. PMID: 20613609. 17. Antony AK, Chen WF, Kolokythas A, Weimer KA, Cohen MN. Use of virtual surgery and stereolithography-guided osteotomy for mandibular reconstruction with the free fibula. Plast Reconstr Surg. 2011 Nov;128(5):1080-4. doi: 10.1097/PRS.0b013e31822b6723. PMID: 22030490. 18. Zheng GS, Su YX, Liao GQ, Chen ZF, Wang L, Jiao PF, Liu HC, Zhong YQ, Zhang TH, Liang YJ. Mandible reconstruction assisted by preoperative virtual surgical simula-tion. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012 May;113(5):604-11. doi: 10.1016/j.tripleo.2011.05.016. Epub 2011 Aug 19. PMID: 22676986. 19. Mazzoni S, Marchetti C, Sgarzani R, Cipriani R, Scotti R, Ciocca L. Prosthetically guided maxillofacial surgery: evaluation of the accuracy of a surgical guide and custom-made bone plate in oncology patients after mandibular reconstruction. Plast Reconstr Surg. 2013 Jun;131(6):1376-85. doi: 10.1097/PRS.0b013e31828bd6b0. PMID: 23714798. 20. Peel S, Bhatia S, Eggbeer D, Morris DS, Hayhurst C. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants. Proc Inst Mech Eng H. 2017 Jun;231(6):509-524. doi: 10.1177/0954411916681346. Epub 2016 Dec 25. PMID: 28019190. 21. Malanchuk VO, Kopchak AV, Kryshhuk M G. De-termination of functional load modes in patients with traumatic fracture of the lower jaw after osteosynthesis using modern computer modeling methods. Klinichna hirurgija. 2013;3:53-58 22. Maurer P, Pistner H, Schubert J. Computergestützte Kaukraftanalyse bei Patienten mit Unterkieferkontinuitätsresektionen [Computer assisted chewing power in patients with segmental resection of the mandible]. Mund Kiefer Gesichtschir. 2006 Jan;10(1):37-41. German. doi: 10.1007/s10006-005-0656-y. PMID: 16315074. 23. Tarsitano A, Battaglia S, Crimi S, Ciocca L, Scotti R, Marchetti C. Is a computer-assisted design and computer-assisted manufacturing method for mandibular reconstruction economically viable? J Craniomaxillofac Surg. 2016 Jul;44(7):795-9. doi: 10.1016/j.jcms.2016.04.003. Epub 2016 Apr 13. PMID: 27193477. 24. Korioth TW, Hannam AG. Mandibular forces during simulated tooth clenching. J Orofac Pain. 1994 Spring;8(2):178-89. PMID: 7920353. 25. Koolstra JH, van Eijden TM. The jaw open-close movements predicted by biomechanical modelling. J Biomech. 1997 Sep;30(9):943-50. doi: 10.1016/s0021-9290(97)00058-4. PMID: 9302617. 26. Koolstra JH, van Eijden TM. Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech. 2005 Dec;38(12):2431-9. doi: 10.1016/j.jbiomech.2004.10.014. Epub 2004 Dec 30. PMID: 16214491. 27. Ichim I, Kieser JA, Swain MV. Functional signifi-cance of strain distribution in the human mandible under masti-catory load: numerical predictions. Arch Oral Biol. 2007 May;52(5):465-73. doi: 10.1016/j.archoralbio.2006.10.020. Epub 2006 Nov 29. PMID: 17137552. 28. Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17(5):349-61. doi: 10.1016/0021-9290(84)90029-0. PMID: 6736070. 29. Dechow PC, Nail GA, Schwartz-Dabney CL, Ash-man RB. Elastic properties of human supraorbital and mandibu-lar bone. Am J Phys Anthropol. 1993 Mar;90(3):291-306. doi: 10.1002/ajpa.1330900304. PMID: 8460653. 30. Daegling DJ, Hylander WL. Biomechanics of torsion in the human mandible. Am J Phys Anthropol. 1998 Jan;105(1):73-87. doi: 10.1002/(SICI)1096-8644(199801)105:1<73: AID-AJPA7>3.0.CO;2-E. PMID: 9537929.

Published

2021-05-27

How to Cite

Черногорський, Д., Чепурний, Ю., & Копчак, А. (2021). STUDY OF BIOMECHANICAL PROPERTIES OF ENDOPROSTHESES AND PATIENT-SPECIFIC IMPLANTS FOR REPLACEMENT OF SUBTOTAL DEFECTS OF THE LOWER JAW BY THE FINITE ELEMENT METHOD. Stomatological Bulletin, 112(3), 50–59. https://doi.org/10.35220/2078-8916-2020-37-3-50-59

Most read articles by the same author(s)