ASSESSMENT OF THE EFFICIENCY OF USING DIFFERENT METHODS OF BONE PLASTIC (LITERATURE REVIEW)

Authors

  • K.K. Romanov State Establishment “The Institute of Stomatology and Maxillo-facial Surgery National Academy of Medical Sciences of Ukraine”
  • H.O. Babenia State Establishment “The Institute of Stomatology and Maxillo-facial Surgery National Academy of Medical Sciences of Ukraine”
  • S.A. Shnaider State Establishment “The Institute of Stomatology and Maxillo-facial Surgery National Academy of Medical Sciences of Ukraine”

DOI:

https://doi.org/10.35220/2078-8916-2024-53-3.21

Keywords:

alveolar process, bone augmentation, dental implantation, bone resorption, sinus lifting, guided bone regeneration.

Abstract

The alveolar process is a vital dynamic structure responsible for supporting teeth and constantly adapting to mechanical loads, such as chewing and other oral functions. Its volume and shape depend on the position and axis of tooth eruption, as well as mechanical interaction with the periodontal ligament. After tooth loss, significant changes occur in the bone tissue due to the lack of loading: osteoclasts increase their activity, leading to bone resorption, while osteoblast activity decreases, contributing to alveolar process atrophy. This process is most intense in the first few months after tooth loss. Tooth loss and the subsequent reduction in bone volume create significant challenges for dental implantation. In such cases, it is critically important to apply methods for restoring bone volume, such as bone augmentation, sinus lifting, and guided bone regeneration. These procedures are aimed at restoring the functional structure of the jaw and creating the necessary conditions for successful osseointegration of dental implants. Modern studies show that bone grafting before implantation significantly increases implant stability and result predictability. For example, guided bone regeneration methods, including the use of barrier membranes and other biomaterials, demonstrate high efficiency in ensuring successful implantation even in complex cases. Clinical data indicate that using autogenous and xenogeneic materials to restore bone defects contributes to the long-term stability of implants. Furthermore, cutting-edge technologies in bone regeneration, such as the use of growth factors and stem cells, open new prospects for accelerating and improving the quality of recovery processes. These methods stimulate faster and more effective bone regeneration, reducing the risk of complications and increasing the chances of successful implantation. Thus, bone grafting technologies are constantly evolving, allowing not only to improve treatment outcomes but also to enhance the overall quality of life for patients. One of the most important issues dentists face when planning dental implantation is the insufficient volume of bone tissue in the area of the alveolar ridge. Without an adequate amount of bone, the implant cannot be stably placed, which can lead to complications or even cancellation of the procedure. Bone loss occurs not only after tooth extraction but also due to periodontal diseases, trauma, and infections. Therefore, it is essential to consider all possible factors that may affect treatment success and apply an individual approach to each patient. In general, restoring sufficient bone volume is a key factor for the long-term success of dental implantation. Modern methods of bone augmentation, guided bone regeneration, and innovative materials significantly improve surgical outcomes, even in complex clinical cases. An individualized approach, careful planning, and the use of modern surgical technologies ensure high success rates of dental implants, allowing patients to regain not only the aesthetic appeal of their smile but also the functionality of their teeth.

References

Arau´jo, M.G., & Lindhe, J: (2005). Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol, 32, 212–218. doi: 10.1111/ j.1600-051X.2005.00642.x

Marks, S.C., Jr., & Schroeder, H.E. (1996). Tooth eruption: Theories and facts. The Anatomical Record, 245(2), 374-393 doi: 10.1002/(SICI)1097-0185(199606)2 45:2<374::AID-AR18>3.0.CO;2-M.

Marks, S.C., Jr., & Cahill, D.R. (1987). Regional control by the dental follicle of alterations in alveolar bone metabolism during tooth eruption. Journal of Oral Pathology, 16(4), 164169 doi: 10.1111/j.1600-0714.1987. tb02060.x.

Huang, J., Liu, X., W-ang, Y., & Bao, C. (2023). Effect of dental follicles in minimally invasive open-eruption technique of labially impacted maxillary central incisors. Hua Xi Kou Qiang Yi Xue Za Zhi., 1, 41(2), 197-202. English, Chinese. doi: 10.7518/hxkq.2023.2022413.

Gorski, J.P., Marks, S.C., Jr., Cahill, D.R., & Wise, G.E. (1988). Developmental changes in the extracellular matrix of the dental follicle during tooth eruption. Connective Tissue Research, 18(2), 175-190.

Buser, D., Chappuis, V., Belser, U. C., & Chen, S. (2017). Implant placement post extraction in esthetic single tooth sites: When immediate, when early, when late? Periodontology 2000, 73, 84-102 doi: 10.1111/ prd.12170.

Benic, G. I., & Hämmerle, C. H. F. (2014). Horizontal bone augmentation by means of guided bone regeneration. Periodontology 2000, 66(1), 13-40. doi: 10.1111/ prd.12039.

Araujo, M.G., & Lindhe, J. (2005). Dimensional ridge alterations following tooth extraction. An experimental study in the dog. Journal of Clinical Periodontology, 32(2), 212-8. doi: 10.1111/j.1600-051X.2005.00642.x.

Darby, I., Chen, S., De, & Poi, R. (2008). Ridge preservation: what is it and when should it be considered. Periodontology 2000, 53(1), 11-21. doi: 10.1111/j.1834-7 819.2007.00008.x.

Chiapasco, M., Casentin, P., & Zaniboni, M. (2009). Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants., 24, 237-59.

Misch, C.E. (2008). Contemporary Implant Dentistry. Elsevier Mosby, 1034-1035. https://www.scirp.org/ reference/referencespapers?referenceid=2628600

Tatum H Jr. (1986). Maxillary and sinus implant reconstructions. Dent Clin North Am., 30(2), 207-29.

Hämmerle, C.H., &, R.E. (2003). Bone augmentation by means of barrier membranes. Periodontol 2000, 33, 36-53. doi: 10.1046/j.0906-6713.2003.03304.x.

Jensen, O.T. (2002). Alveolar Distraction Osteogenesis and Tissue Engineering. Blackwell Munksgaard.

Esposito, M., Grusovin, M.G., Coulthard, P., & Worthington, H.V. (2006). The efficacy of various bone augmentation procedures for dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants, 21(5), 696-710 16. Smeets, R., Matthie, L., Windisch, P., Gosau, M., Jung, R., Brodala, N., Stefanini, M., Kleinheinz, J., Payer, M., Henningsen, A., Al-Nawas, B., & Knipfer, C. (2022). Horizontal augmentation techniques in the mandible: a systematic review. Int J Implant Dent. 8(1), 23. doi: 10.1186/s40729-022-00421-7.

Bjelica, R., Smojver, I., Vuletić, M., Gerbl, D., Marković, L., & Gabrić, D. (2024). Lateral Alveolar Ridge Augmentation with Autogenous Tooth Roots and Staged Implant Placement-5-Year Follow-Up Case Series. J Clin Med. Aug 29;13(17):5118. doi: 10.3390/jcm13175118. 18. Elraee, L., Ibrahim, S.S.A., & Adel-Khattab, D. (2024). Double layer graft technique for horizontal alveolar ridge augmentation with staged implant placement: radiographic histological and implant stability analysis-a case report. BMC Oral Health., 24(1), 690. doi: 10.1186/s12903-024-04416-1.

Korsch, M., & Peichl, M. (2021). Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. Int J Environ Res Public Health, 18(6), 3174. doi: 10.3390/ ijerph18063174.

Goyenvalle, E., Bouler, J.M., Gauthier, O., Aguado, E., & Pilet, P. (2018). Xenografts for Bone Substitution: Biological Properties and Clinical Applications. Tissue Engineering, Part B: Reviews, 24(3), 234–248.

Ferreira, A.M., Gentile, P., Chiono, V., & Ciardelli, G. (2020). Collagen for Bone Tissue Regeneration. Acta Biomaterialia, 10(2), 123–132.

Brånemark, P.I., Adell, R., & Hansson, B.O. (2020). Allogeneic Bone Transplants and Their Use in Clinical Implantology. Journal of Clinical Implant Dentistry, 29(4), 345–352

Lau, C.S., Park, S.Y., Ethiraj, L.P., Singh, P., Raj, G., Quek, J., Prasadh, S., Choo, Y., & Goh, B.T. (2024). Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci., 25(12), 6805. doi: 10.3390/ ijms25126805.

Buser, D., Chappuis, V., Bornstein, M.M., Wittneben, J.G., & Martin, W. (2017). Long-term Outcomes of Xenografts in Bone Augmentation Procedures. International Journal of Oral and Maxillofacial Implants, 34(2), 278–284.

Hernandez, M.A., Lopez, M.A., & Rojkind, M. (2019). Clinical Use of Allogenic Grafts in Oral and Maxillofacial Surgery. Journal of Biomedical Science, 20(1), 89–102.

Sánchez-Labrador, L., Martín-Ares, M., Ortega-Aranegui, R., López-Quiles, J., & Martínez- González, J.M. (2020). Autogenous Dentin Graft in Bone Defects after Lower Third Molar Extraction: A Split- Mouth Clinical Trial. Materials (Basel). 13(14), 3090. doi: 10.3390/ma13143090.

Schwarz F., Golubovic V., Becker K., & Mihatovic I. (2015). Extracted tooth roots used for lateral alveolar ridge augmentation: a proof-of-concept study, J Clin Periodontol,. https://doi.org/10.1111/jcpe.12481

Borie, E., Fuentes, R., Del Sol, M., Oporto, G., & Engelke, W. (2011). The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Ann Anat., 193(5), 412-7. doi: 10.1016/j.aanat.2011.06.003.

Klijn, R.J., Meijer, G.J., Bronkhorst, E.M., & Jansen, J.A. (2010). A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 16(5):493-507. doi: 10.1089/ten.TEB.2010.0035.

Kim, Y.K., Kim, S.G., Yun, P.Y., Yeo, I.S., Jin, S.C., Oh, J.S., Kim, H.J., Yu, S.K., Lee, S.Y., Kim, J.S., Um, I.W., Jeong, M.A., &Kim, G.W. (2014). Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol. Jan;117(1), e39-45. doi: 10.1016/j.oooo.2012.04.018.

El Chaar, E., & Rutkowski, J.L. (2022). Is Autogenous Bone Still the “Gold Standard” in Oral Bone Grafting? J Oral Implantol, 48(1), 1 (https://doi.org/10.1563/ aaid-joi-d-22-editorial.4801

Zhang, S., Li, X., Qi, Y., Ma, X., Qiao, S., Cai, H., Zhao, B.C., Jiang H.B., & Lee, E.S. (2021). Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng Regen Med. 18(3), 327-341. doi: 10.1007/ s13770-021-00333-4.

Carlos A. Andreucci, Elza M.M. Fonseca, & Renato N. Jorge. (2023). Immediate Autogenous Bone Transplantation Using a Novel Kinetic Bioactive Screw 3D Design as a Dental Implant, BioMedInformatics, 3(2), 299-305; https://doi.org/10.3390/biomedinformatics3020020

Vlad A.l. Georgeanu, Oana Gingu, Iulian V. Antoniacand, & Horia O. Manolea. (2023). Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research, Applied Sciences, 13(14):8471 doi: 10.3390/app13148471

Smith, A. & Jones, B. (2022). Postoperative Infections in Bone Grafting Procedures. Journal of Oral Maxillofacial Surgery, 80(2), 123-130.

White, C. & et al. (2021). Bone Graft Rejection and Immune Response in Oral Surgery. Clinical Implant Dentistry and Related Research, 23(1), 45-53.

Greenberg, M. (2020). Managing Bleeding Complications in Oral Bone Augmentation. Oral Surgery, Oral Medicine, Oral Pathology, 110(6), 601-605.

Neff, L. & et al. (2019). Nerve Injuries Associated with Lateral Bone Grafting in the Mandible. International Journal of Oral Surgery, 48(4), 210-216.

O’Connor, D. & West, R. (2022). The Stability of Bone Grafts in Dental Implantology. Journal of Dental Research, 101(3), 341-347.

Luciana C. Boggian, Ana V. Silva, Geovana R. Santos, Geovanna F. Olive. (2023). Effect of intra-radicular cleaning protocols after post-space preparation on marginal adaptation of a luting agent to root dentin. Journal of Oral Science, 65(2), 81-86 https://doi.org/10.2334/ josnusd.22-0344

Baker, H. & Clark, J. (2018). Challenges in Lateral Bone Grafting: A Review of Anatomical Considerations. Implant Dentistry, 27(5), 499-506.

Patel, R.A., Wilson, R.F., Patel, P.A., & Palmer, R.M. (2013). The effect of smoking on bone healing: A systematic review. Bone Joint Res., 2(6), 102-11. doi: 10.1302/2046-3758.26.2000142. PMID: 23836474; PMCID: PMC3686151.

Sbricoli, L., Bazzi, E., Stellini, E., & Bacci, C. (2022). Systemic Diseases and Biological Dental Implant Complications: A Narrative Review. Dent J (Basel)., 11(1), 10. doi: 10.3390/dj11010010. PMID: 36661547; PMCID: PMC9857470.

Sakamoto, Y., Tanabe, A., Moriyama, M., Otsuka, Y., Funahara, M., Soutome, S., Umeda, M., & Kojima, Y. (2022). Number of Bacteria in Saliva in the Perioperative Period and Factors Associated with Increased Numbers. Int J Environ Res Public Health., 19(13), 7552. doi: 10.3390/ijerph19137552.

Published

2024-12-23

How to Cite

Романов, К., Бабеня, Г., & Шнайдер, С. (2024). ASSESSMENT OF THE EFFICIENCY OF USING DIFFERENT METHODS OF BONE PLASTIC (LITERATURE REVIEW). Stomatological Bulletin, 128(3), 126–133. https://doi.org/10.35220/2078-8916-2024-53-3.21

Most read articles by the same author(s)

1 2 3 4 5 > >>